Multi-finance.ru

Обзор финансовых рынков
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Детерминированный факторный анализ метод абсолютных разниц

Способ абсолютных разниц детерминированного факторного анализа

Построив факторную модель детерминированного анализа, необходимо определить способ оценки влияния факторов. В детерминированном факторном анализе используют следующие основные способы:

  • способ цепных подстановок;
  • способ абсолютных разниц;
  • способ относительных (процентных) разниц;
  • интегральный метод и др.

Способ абсолютных разниц (абсолютных отклонений) является модификацией способа цепных подстановок. Он прост в расчетах, но менее универсален – с его помощью производят расчет влияния факторов только для мультипликативных моделей и моделей смешанного типа: Y=(a-b)c, Y=a(b-c).

Для мультипликативной модели расчет производится умножением абсолютного прироста исследуемого фактора на базисную величину факторов, находящихся справа от него, и на фактическую величину факторов, расположенных в модели слева от него.

В общем виде применение способа абсолютных разниц можно описать следующим образом:

y0 = a0 * b0 * c0;
Δya = Δa * b0 * c0;
Δyb = a1*Δb* c0;
Δyс = a1 * b1* Δс;
y1 = a1 * b1 * c1;
где a0, b0, c0 — базисные значения факторов, оказывающих влияние на обобщающий показатель у; a1 , b1, c1 — фактические значения факторов;
Δa=a1-a0, Δb=b1-b0, Δc=c1-c0, — абсолютные изменения (отклонение факта от базы или плана) факторов а, b, с соответственно.

Общее изменение Δу = у1 – у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора:
Δy = Δya + Δyb + Δyc.

Пример применения способа абсолютных разниц

Порядок применения способа абсолютных разниц рассмотрим на следующем примере. Проанализировать влияние на валовый объем производства количества работников, количества отработанных дней одним работником и их выработки способом абсолютных разниц. Исходные данные представлены в таблице.

Решение. Зависимость объема производства продукции от данных факторов можно описать с помощью трехфакторной мультипликативной модели: ВП = ЧР * Д*ДВ.

Алгоритм расчета способом абсолютных разниц таков:

  • ВП0 = ЧР0 * Д0*ДВ0 = 20*200*0,73 = 2920 тыс. руб.
  • Влияние изменения количества работников на обобщающий показатель можно рассчитать по формуле:
    ΔВП(ЧР) = (ЧР1-ЧР2)*Д0*ДВ0 = (25-20)*200*0,73 = 730 тыс. руб.
  • Влияние изменения количества отработанных дней одним работником на обобщающий показатель можно рассчитать по формуле:
    ΔВП(Д) = ЧР1*(Д1-Д0)*ДВ0 = 25*(208-200)*0,73 = 146 тыс. руб.
  • Влияние изменения величины среднедневной выработки на обобщающий показатель можно рассчитать по формуле:
    ΔВП(ДВ) = ЧР1*Д1*(ДВ1-ДВ0) = 25*208*(0,65-0,73) = -416 тыс. руб.
  • Суммарное влияние трех факторов определим по формуле:
    ΔВП = ΔВП(ЧР) + ΔВП(Д) + ΔВП(ДВ) = 730+146+(-416) = 460 тыс. руб. — значение совпадает с табличным и подтверждает правильность расчетов.
Читать еще:  Анализ статей баланса

Вывод. Таким образом, на изменение объема производства продукции положительное влияние оказало увеличение на 5 человек численности работников, что вызвало увеличение объема производства на 730 тыс. руб. и увеличение количества отработанных дней на 8 каждым работником, что вызвало увеличение объема производства на 146 тыс. руб.
Отрицательное влияние оказало снижение среднедневной выработки на 80 руб., что вызвало снижение объема производства на 416 тыс. руб.
Суммарное влияние трех факторов привело к увеличению объема производства на 460 тыс. руб.

Способы детерминированного факторного анализа

Детерминированный факторный анализ — это методика изучения влияния факторов на результативный показатель, связь между которыми имеет функциональный характер. То есть результативный показатель представлен в виде произведения, алгебраической суммы или частного факторов.

Этапы проведения детерминированного факторного анализа:

· построение обоснованной детерминированной факторной модели;

· выбор приема факторного анализа;

· реализация расчетных процедур;

· формулирование выводов и рекомендаций по результатам анализа.

Построение факторной модели. В детерминированной факторной модели связи между переменными жестко фиксированы и каждой конкретной величине изменения независимой переменной (фактора) соответствует строго определенное (детерминированное) изменение зависимой переменной (результативного показателя).

На этом этапе происходит моделирование взаимосвязей между результативными показателями и факторами, которые влияют на их величину. Это очень важный этап, так как если на этом этапе будет допущена ошибка, то все дальнейшие расчеты не дадут верных результатов. Смысл этапа состоит в том, чтобы в форме математического уравнения выразить взаимосвязь исследуемого показателя и факторов.

Существует правило, которое заключается в следующем: любое расширение детерминированной факторной модели не должно противоречить логике связи «причина — следствие». То есть факторы, которые входят в модель, должны находиться в причинно-следственной связи с показателем. Кроме того, все показатели факторной модели должны быть количественно измеряемыми.

В зависимости от числа факторов, используемых в модели, модель может быть двух-, трех-, четырехфакторной и т. д.

Выделяют следующие виды детерминированных факторных моделей:

— аддитивная модель. Это модель, в которую факторы входят в виде алгебраической суммы

; (2)

— мультипликативная модель. Это модель, в которую факторы входят в виде произведения

; (3)

Читать еще:  Анализ и оценка ликвидности баланса

— кратная модель. Это модель, представляющая собой отношение факторов, то есть результативный показатель получают делением одного фактора на величину другого

; (4)

— смешанная модель. Это модели, которые сочетают в себе различные комбинации предыдущих моделей

; (5)

; (6)

; (7)

Следующим этапом проведения детерминированного факторного анализа является выбор приема факторного анализа. Существует несколько способов проведения детерминированного факторного анализа:

1. Способ цепных подстановок.Способ цепных подстановок позволяет измерить влияние каждого отдельного фактора на прирост результативного показателя. Суть способа цепных подстановок заключается в последовательной замене базисной величины каждого фактора отчетными значениями и в оценке влияния произведенной замены на результативный показатель. К достоинству этого метода относится достаточная простота и универсальность. Способ цепных подстановок можно использовать для всех видов детерминированных факторных моделей (аддитивных, мультипликативных, кратных, комбинированных).

При использовании этого способа большое значение имеет очередность расстановки факторов в факторной модели и, соответственно, последовательность изменения значений факторов, так как от этого зависит количественная оценка влияния каждого фактора.

Для метода цепных подстановок должна применяться правильно построенная детерминированная факторная модель, должна соблюдаться определенная очередность в расстановке факторов. Если в факторной модели присутствуют количественные и качественные факторы, то замену факторов следует начинать с количественного фактора.

Количественные факторы отражают количественную определенность явлений. Количественные факторы могут выражаться как в стоимостном, так и в натуральном измерителях. Например, количественные факторы характеризуют объем производства и реализации продукции, причем величина этих факторов может быть выражена как в рублях, так и в штуках, метрах и т. д.

Качественные факторы характеризуют внутренние свойства, особенности и признаки изучаемых объектов. Например, качественным фактором является жирность молока, производительность труда, качество продукции и т. д.

Алгоритм расчета способом цепной подстановки для двухфакторной мультипликативной модели выглядит следующим образом:

, (8)

где а – количественный фактор;

в – качественный фактор.

Анализ начинают с того, что рассчитывают:

(9)

(10)

(11)

Далее определяют общее изменение результата (У):

(12)

Определяют влияние факторов:

— количественного фактора по формуле

(13)

— качественного фактора по формуле

(14)

(15)

Рассмотрим алгоритм расчета на конкретном примере.

Пример 1.По исходным данным таблицы 1 определите отклонение объема производства в целом и за счет влияния факторов.

Таблица 1 – Исходные данные для факторного анализа

Читать еще:  Краткий анализ бухгалтерского баланса

Способ абсолютных разниц — Анализ хозяйственной деятельности предприятия

6.3. Способ абсолютных разниц

Сущность, назначение и сфера применения способа абсолютных разниц. Порядок и алгоритмы расчета влияния факторов этим способом

Способ абсолютных разниц является одной из модификаций элиминирования. Как и способ цепной подстановки, он применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных и мультипликативно-аддитивных моделях: Y = (а — b и У = a(b — с). И хотя его использование ограничено, но благодаря своей простоте он получил широкое применение в АХД. Особенно эффективно применяется этот способ в том случае, если исходные данные уже содержат абсолютные отклонения по факторным показателям.

При его использовании величина влияния факторов рассчитывается умножением абсолютного прироста исследуемого фактора на базовую (плановую) величину факторов, которые находятся справа от него, и на фактическую величину факторов, расположенных слева от него в модели.

Рассмотрим алгоритм расчета для мультипликативной факторной модели типа Y=axbxcxd. Имеются плановые и фактические значения по каждому факторному показателю, а также их абсолютные отклонения:

Определяем изменение величины результативного показателя за счет каждого фактора:

Как видно из приведенной схемы, расчет строится на последовательной замене плановых значений факторных показателей на их отклонения, а затем на фактический уровень этих показателей.

Рассмотрим методику расчета влияния факторов этим способом для четырехфакторной мультипликативной модели валовой продукции:

Таким образом, способ абсолютных разниц дает те же результаты, что и способ цепной подстановки. Здесь также необходимо следить за тем, чтобы алгебраическая сумма прироста результативного показателя за счет отдельных факторов была равна общему его приросту.

Рассмотрим алгоритм расчета факторов этим способом в смешанных моделях типа V = (а — b)с. Для примера возьмем факторную модель прибыли от реализации продукции, которая уже использовалась в предыдущем параграфе:

Прирост суммы прибыли за счет изменения объема реализации продукции:

Расчет влияния структурного фактора при помощи этого способа проводится следующим образом:

Как видно из табл. 6.4, за счет изменения структуры реализации средняя цена за 1 т молока уменьшилась на 40 тыс. руб., а за весь фактический объем реализации продукции прибыли было получено меньше на 10 млн руб. (40 тыс. руб. х 250 т). .

Ссылка на основную публикацию
Adblock
detector