Multi-finance.ru

Обзор финансовых рынков
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Распределите способы детерминированного факторного анализа

Методы и способы детерминированного факторного анализа

Идея детерминированного факторного анализа заключается в разложении общей вариации результатирующей переменной у на независимые компоненты, каждая из которых характеризуется влиянием того или иного фактора хi или взаимодействием целого ряда факторов. Способы детерминированного факторного анализа основываются на методе элиминирования. Элиминировать – это, значит, устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя кроме одного. При моделировании детерминированных факторных систем необходимо выполнять ряд требований.

Факторы, которые включаются в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.

Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями. Иначе говоря, построенная факторная система должна иметь познавательную ценность.

Все показатели факторной модели должны быть количественно измеримы, т. е. Должны иметь единицу измерения и необходимую информационную обеспеченность.

Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это значит, что в ней должна учитываться соразмерность изменений результативного и факторного показателей, а сумма влияния отдельных факторов должна равняться общему изменению результативного показателя.

Факторные модели в детерминированном анализе обязательно должны подчиняться следующему условию: сначала в моделях просчитывается влияние количественных факторов, а затем качественных. Если же имеется несколько количественных и качественных показателей, то сначала следует измерить величину факторов первого уровня подчинения, а потом более низкого. Выполнение данного требования позволяет получить более точные результаты, и избежать недостатков метода элиминирования.

5.1. Способ цепной подстановки

Способ цепной подстановки является наиболее универсальным, так как его можно применять для всех типов детерминированных факторных моделей. Сущность данного способа заключается в определении влияния отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного, на фактический в отчетном периоде.

Например, возьмем трехфакторную мультипликативную модель типа:

у = авс, тогда влияние факторов можно определить следующим образом:

Пример 12. В таблице приведены данные об использовании основных средств в организации. На основании приведенной информации (табл. 9.) определим, как повлияло изменение объема основных средств (количественный, экстенсивный фактор) и фондоотдачи (качественный, интенсивный фактор) на объем выпущенной продукции.

Показатели использования основных средств

1) Расчет влияния факторов, с помощью метода цепных подстановок:

2) Рассчитаем влияние изменения среднегодовой стоимости основных средств на изменение объема выпущенной продукции ВП2-ВП1

Данные расчета показывают, что в результате увеличения стоимости основных средств на 500 тыс.руб, прирост объема выпущенной продукции составил 625 тыс.руб.

2) Рассчитаем влияние изменения фондоотдачи основных средств на изменение объема выпущенной продукции ВП3-ВП2

Данные расчета показывают, что в результате увеличения фондоотдачи на 0,05 коп на каждый вложенный рубль в производство основных средств, прирост объема выпущенной продукции составил 430 тыс.руб.

3) Таким образом совокупное влияние факторов составило 625+430=+1055тыс.руб.

4) Определим прирост выпущенной продукции за счет интенсивного и экстенсивного фактора:

625:1055*100%=59% — влияние экстенсивного фактора

430:1055*100%=41% — влияние интенсивного фактора

Следовательно, в отчетном периоде объем выпущенной продукции на 59% вырос за счет экстенсивного и соответственно на 41% за счет интенсивного факторов.

Расчет влияния интенсивного и экстенсивного фактора можно определить и другим способом:

5.2. Способ абсолютных разниц

При использовании способа абсолютных разниц величина влияния факторов рассчитывается умножением абсолютного прироста на базовую величину факторов, которые находятся справа от него и на фактическую величину факторов, расположенных слева от него. Способ абсолютных разниц применим в мультипликативных и смешанных моделях типа:

у = а(в-с) и у = (а-в)с.

Покажем расчет влияния факторов на мультипликативной модели

Рассмотрим алгоритм расчета факторов этим способом в моделях мультипликативно-аддитивного типа.

у1 = Dа (в-с) — влияние фактора а

у2 = а1 Dв – влияние фактора в

у3 = а1 (-Dс) — влияние фактора с

Пример 13. В таблице приведены данные об использовании основных средств в организации. На основании приведенной информации определим, как повлияло изменение объема основных средств, доли активной части основных средств и фондоотдачи активной части основных средств на объем выпущенной продукции.

Показатели использования основных средств

Расчет влияния факторов, с помощью метода цепных подстановок:

В результате прироста среднегодовой стоимости основных средств объем произведенной продукции увеличилась на 625 тыс.руб.

В результате роста доли активной части стоимости основных средств объем произведенной продукции увеличилась на 295,4 тыс.руб.

В результате роста фондоотдачи активной части стоимости основных средств объем произведенной продукции увеличилась на 134,6 тыс.руб.

Таким образом, совокупное влияние факторов составило:

5.3. Индексный метод анализа

Мощным орудием сравнительного анализа экономики являются индексы. Индексный метод основывается на относительных показателях, выражающих отношение уровня данного явления к уровню его в прошлое время или к уровню аналогичного явления, принятому в качестве базы. Индексный метод можно применять в мультипликативных и кратных моделях.

В зависимости от степени охвата подвергнутых обобщению единиц изучаемой совокупности индексы подразделяются на индивидуальные и общие. Индивидуальные индексы характеризуют изменения отдельных единиц совокупности. Общие индексы выражают сводные результаты совместного изменения всех единиц, образующих совокупность.

Способы детерминированного факторного анализа.

Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер.

Способы детерминированного факторного анализа: цепной подстановки, абсолютных разниц, относительных разниц, интегральный.

Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели.

Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.

Способ цепных подстановок используется для того, чтобы выявить, какие факторы влияли на анализируемый показатель, установить, в каком направлении и как действовал каждый фактор. Сущность этого приема состоит в том, чтобы из всех действующих факторов выделить основные, имеющие решающее влияние на изменение показателя. Преимущества данного способа: универсальность применения, простота расчетов. Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения.

Способ абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора способом разниц определяется как произведение отклонения изучаемого фактора на базисное или отчетное значение другого фактора в зависимости от выбранной последовательности подстановки.

Способ относительных разниц применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных и смешанных моделях. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.

Читать еще:  Сравнительный анализ двух предприятий

Интегральный метод позволяет достигнуть полного разложения результативного показателя по факторам и носит универсальный характер, т.е. применим к мультипликативным, кратным и смешанным моделям. Операция вычисления определенного интеграла осуществляется с помощью вычислительных возможностей персональных компьютеров и сводится к построению подынтегральных выражений, которые зависят от вида функции или модели факторной системы.

Способ логарифмированияприменяется для измерения влияния факторов в мультипликативных моделях. Здесь результат расчета зависит от месторасположения факторов в модели и обеспечивается более высокая точность расчетов. Преимущество способа логарифмирования выражается в относительной простоте вычислений и повышения точности расчетов.

Основу метода процентных чисел составляет тезис о том, что можно идентифицировать некий показатель, являющийся наиболее важным с позиции характеристики деятельности предприятия, который благодаря такому свойству мог быть использован как базовый для определения прогнозных значений других показателей в том смысле, что они «привязываются» к базовому показателю с помощью простейших пропорциональных зависимостей. В качестве базового показателя чаще всего используется либо выручка от реализации, либо себестоимость реализованной (произведенной) продукции.

Различают четыре типа детерминированных моделей:

аддитивные модели К таким моделям, например, относятся показатели себестоимости во взаимосвязи с элементами затрат на производство и со статьями затрат; показатель объема производства товаров в его взаимосвязи с объемом выпуска отдельных изделий или объема выпуска в отдельных подразделениях;

мультипликативные.Примером мультипликативной модели является двухфакторная модель объема продаж. РП = Ч * СВ, гдеЧ — среднесписочная численность работников; CB — средняя выработка на одного работника;

Кратные.Примером кратной модели служит показатель срока оборачиваемости товаров (ТОБ.Т) (в днях): ТОБ.Т = ЗТ / ОР, где ЗТ— средний запас товаров; ОР — однодневный объем продаж.

Смешанные. Представляют собой комбинацию перечисленных выше моделей. Примерами таких моделей служат показатели затрат на 1 руб. произведенной продукции, показатели рентабельности и др.

Дата добавления: 2015-02-16 ; просмотров: 15 | Нарушение авторских прав

Способы детерминированного факторного анализа

Детерминированный факторный анализ — это методика изучения влияния факторов на результативный показатель, связь между которыми имеет функциональный характер. То есть результативный показатель представлен в виде произведения, алгебраической суммы или частного факторов.

Этапы проведения детерминированного факторного анализа:

· построение обоснованной детерминированной факторной модели;

· выбор приема факторного анализа;

· реализация расчетных процедур;

· формулирование выводов и рекомендаций по результатам анализа.

Построение факторной модели. В детерминированной факторной модели связи между переменными жестко фиксированы и каждой конкретной величине изменения независимой переменной (фактора) соответствует строго определенное (детерминированное) изменение зависимой переменной (результативного показателя).

На этом этапе происходит моделирование взаимосвязей между результативными показателями и факторами, которые влияют на их величину. Это очень важный этап, так как если на этом этапе будет допущена ошибка, то все дальнейшие расчеты не дадут верных результатов. Смысл этапа состоит в том, чтобы в форме математического уравнения выразить взаимосвязь исследуемого показателя и факторов.

Существует правило, которое заключается в следующем: любое расширение детерминированной факторной модели не должно противоречить логике связи «причина — следствие». То есть факторы, которые входят в модель, должны находиться в причинно-следственной связи с показателем. Кроме того, все показатели факторной модели должны быть количественно измеряемыми.

В зависимости от числа факторов, используемых в модели, модель может быть двух-, трех-, четырехфакторной и т. д.

Выделяют следующие виды детерминированных факторных моделей:

— аддитивная модель. Это модель, в которую факторы входят в виде алгебраической суммы

; (2)

— мультипликативная модель. Это модель, в которую факторы входят в виде произведения

; (3)

— кратная модель. Это модель, представляющая собой отношение факторов, то есть результативный показатель получают делением одного фактора на величину другого

; (4)

— смешанная модель. Это модели, которые сочетают в себе различные комбинации предыдущих моделей

; (5)

; (6)

; (7)

Следующим этапом проведения детерминированного факторного анализа является выбор приема факторного анализа. Существует несколько способов проведения детерминированного факторного анализа:

1. Способ цепных подстановок.Способ цепных подстановок позволяет измерить влияние каждого отдельного фактора на прирост результативного показателя. Суть способа цепных подстановок заключается в последовательной замене базисной величины каждого фактора отчетными значениями и в оценке влияния произведенной замены на результативный показатель. К достоинству этого метода относится достаточная простота и универсальность. Способ цепных подстановок можно использовать для всех видов детерминированных факторных моделей (аддитивных, мультипликативных, кратных, комбинированных).

При использовании этого способа большое значение имеет очередность расстановки факторов в факторной модели и, соответственно, последовательность изменения значений факторов, так как от этого зависит количественная оценка влияния каждого фактора.

Для метода цепных подстановок должна применяться правильно построенная детерминированная факторная модель, должна соблюдаться определенная очередность в расстановке факторов. Если в факторной модели присутствуют количественные и качественные факторы, то замену факторов следует начинать с количественного фактора.

Количественные факторы отражают количественную определенность явлений. Количественные факторы могут выражаться как в стоимостном, так и в натуральном измерителях. Например, количественные факторы характеризуют объем производства и реализации продукции, причем величина этих факторов может быть выражена как в рублях, так и в штуках, метрах и т. д.

Качественные факторы характеризуют внутренние свойства, особенности и признаки изучаемых объектов. Например, качественным фактором является жирность молока, производительность труда, качество продукции и т. д.

Алгоритм расчета способом цепной подстановки для двухфакторной мультипликативной модели выглядит следующим образом:

, (8)

где а – количественный фактор;

в – качественный фактор.

Анализ начинают с того, что рассчитывают:

(9)

(10)

(11)

Далее определяют общее изменение результата (У):

(12)

Определяют влияние факторов:

— количественного фактора по формуле

(13)

— качественного фактора по формуле

(14)

(15)

Рассмотрим алгоритм расчета на конкретном примере.

Пример 1.По исходным данным таблицы 1 определите отклонение объема производства в целом и за счет влияния факторов.

Таблица 1 – Исходные данные для факторного анализа

4.4. СПОСОБЫ ДЕТЕРМИНИРОВАННОГО ФАКТОРНОГО АНАЛИЗА

Одним из важнейших методологических вопросов в АХД является определение величины влияния отдельных факторов на прирост результативных показателей. В детерминированном анализе для этого используются следующие способы: цепной подстановки, индексный, абсолютных разниц, относительных разниц, пропорционального деления и интегральный метод.

Читать еще:  Анализ оборачиваемости оборотных средств предприятия

Первых четыре способа основываются на методе элиминирования.

Способ абсолютных разниц является одной из модификаций элиминирования. Как и способ цепной подстановки, он применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных и смешанных моделях типа: Y = (а — b) ¦ с и Y = а ¦ (b — с). Благодаря своей простоте он получил широкое применение в АХД. Особенно эффективно применяется данный способ в том случае, если исходные данные уже содержат абсолютные отклонения по факторным показателям.

При его использовании величина влияния факторов рассчитывается умножением абсолютного прироста исследуемого фактора на базовую (плановую) величину факторов, которые находятся справа от него, и на фактическую величину факторов, расположенных слева от него в модели.

Рассмотрим алгоритм расчета для мультипликативной факторной модели типа Y = а ¦ b ¦ с ¦ d. Имеются плановые и фактические значения по каждому факторному показателю, а также их абсолютные отклонения:

Да = Аф — Апл; Ab = Вф — Впл; Ас = Сф — Сш; Ad = Dф — Dm.

Определяем изменение величины результативного показателя за счет каждого фактора:

AYa = Да ¦ Впл ¦ Спл ¦ Dra;

AYb = Лф ¦ Ab ¦ Спл ¦ Dra;

AYC = Лф ¦ Вф ¦ Ac ¦ Dm;

AYd=Лф ¦ Вф ¦ Сф ¦ Ad.

Как видно из приведенной схемы, подсчет строится на последовательной замене плановых значений факторных показателей на их отклонения, а затем на фактический уровень этих показателей.

Способ относительных разниц, как и предыдущий, применяется для измерения влияния факторов на прирост результативного показателя только в мультипликативных моделях и комбинированных типа Y = (а — Ъ)С. Он значительно проще цепных подстановок, что при определенных обстоятельствах делает его очень эффективным. Это прежде всего касается тех случаев, когда исходные данные содержат уже определенные ранее относительные отклонения факторных показателей в процентах или коэффициентах.

Рассмотрим методику расчета влияния факторов этим способом для мультипликативных моделей типа Y = А ¦ В ¦ С. Сначала необходимо рассчитать относительные отклонения факторных показателей:

Впл-100%; AC ОТН= сФ

Тогда отклонение результативного показателя за счет каждого фактора определяется следующим образом:

Тпл -Мотн . AY = (Ym +AYa)AB0TH ; A7 =(jSE + AYE + AYb)AC

100 ‘ b 100 ‘ » 100

Согласно этому правилу, для расчета влияния первого фактора необходимо базисную (плановую) величину результативного показателя умножить на относительный прирост первого фактора, выраженный в процентах, и результат разделить на 100.

Чтобы рассчитать влияние второго фактора, нужно к плановой величине результативного показателя прибавить изменение его за счет первого фактора и затем полученную сумму умножить на относительный прирост второго фактора в процентах и результат разделить на 100.

Влияние третьего фактора определяется аналогично: к плановой величине результативного показателя необходимо прибавить его прирост за счет первого и второго факторов и полученную сумму умножить на относительный прирост третьего фактора и т.д.

Способ цепной подстановки используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных (комбинированных). Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде.

Порядок применения этого способа рассмотрим на следующем примере: Ап

1 усл 2 С + D ‘ ф С + D

А-^общ Yф Yпл ; AYu ^усл1 Yun ; А^’с ^усл2 ^усл; AYd Yф ^усл2. Аналогичным образом рассчитывают влияние факторов и по другим детерминированным моделям.

Интегральный способ. Элиминирование как способ детерминированного факторного анализа имеет существенный недостаток. При его использовании исходят из того, что факторы изменяются независимо друг от друга. На самом же деле они изменяются совместно, взаимосвязанно и от этого взаимодействия получается дополнительный прирост результативного показателя, который при применении способов элиминирования присоединяется к одному из факторов, как правило, к последнему. В связи с этим величина влияния факторов на отклонение результативного показателя меняется в зависимости от места, на которое поставлен тот или иной фактор в детерминированной модели.

Чтобы избавиться от этого недостатка, в детерминированном факторном анализе используется интегральный метод, который применяется для измерения влияния факторов в мультипликативных, кратных и смешанных моделях типа Y = А / Е X Последняя представляет собой сочетание кратной и аддитивной моделей. Использование этого способа позволяет получать более точные результаты расчета влияния факторов по сравнению со способами цепной подстановки, абсолютных и относительных разниц и избежать неоднозначной оценки влияния факторов потому, что в данном случае результаты не зависят от местоположения факторов в модели, а дополнительный прирост результативного показателя, который образовался от взаимодействия факторов, раскладывается между ними пропорционально изолированному их воздействию на результативный показатель.

В интегральном методе пользуются определенными формулами. Приведем основные из них для разных моделей:

AFX = 1/2 AX (о + Y); AFy = 1/2 AY (X 0 + X).

Методы детерминированного факторного анализа

Понятие детерминированного факторного анализа

Детерминированный факторный анализ – это метод исследования воздействия на объект факторов, которые связаны с результатом воздействия функционально.

То есть, детерминированный факторный анализ позволяет установить связь между итоговым показателем или функцией, а также факторами или аргументами функции. Для того, чтобы исследовать подобные зависимости необходимо соблюдать ряд требований, к которым относят:

  1. Рассматриваемые факторы должны относиться к реальной действительности, а не быть абстрактными. Они должны быть причиной или следствием рассматриваемого явления или объекта. Такие модели имеют высокий практический потенциал, в отличие от математических абстракций.
  2. Показатели рассматриваемой модели должны быть измеряемы количественно. Так же они должны иметь информационное описание.
  3. Рассматриваемые факторы могут быть оценены по отдельности. То есть, при исследовании взаимосвязи факторов с конечным результатом должна быть возможность увидеть их обособленное влияние на функцию. При этом их совокупное воздействие показывает прирост итогового результата.

Попробуй обратиться за помощью к преподавателям

Детерминированный анализ использует следующие виды моделей. Аддитивные модели используются в случае, если результат представляет собой совокупность нескольких факторных показателей. Математически эта зависимость отображается следующим уравнением:

$Y = x_1 + x_2 + x_3 + … x_n$

В случае, если результат воздействия факторов представляет собой их произведение, то пользуются мультипликативной моделью, которая выглядит как:

$Y = x_1 • x_2 • x_3 • … • x_n$

Если при вычислении необходимо разделить один фактор на другой, то пользуются кратными моделями, представленными такими уравнениями как:

Читать еще:  Факторный анализ себестоимости

Так же могут использоваться смешанные или комбинированные модели. Они строятся на сочетании разных комбинаций вышеперечисленных моделей. Для проведения операций с вышеперечисленными моделями могут использоваться следующие приемы. Например, прием удлинения, когда числитель формулы раскладывают на отдельные факторы. Еще один способ – способ формального разложения. В этом случае знаменатель раскладывается на составляющие факторы. Математическое уравнение:

Задай вопрос специалистам и получи
ответ уже через 15 минут!

$Y = Z / X = Z / x_1 + x_2+… + x_n$

Так же применяется способ расширения, который предполагает умножение числителя и знаменателя на одну или ту же величину, что позволяет исследовать влияние фактора на функцию в целом. Метод сокращения, напротив, позволяет разделить величины на указанный фактор.

Детерминированный факторный анализ предполагает применение различных методов манипулирования действующими факторами. Как правило, он позволяет методом исключения оставлять один фактор и исследовать его влияние на функцию. Для этого специалисты могут использовать методы цепной подстановки, абсолютные и относительные разницы, индексный метод, метод долевого участия и другое.

Метод цепной подстановки

Способ цепной подстановки факторов является наиболее универсальным. Он позволяет опытным и расчетным путем оценить влияние фактора на хозяйственный результат. Сущность метода заключается в замене базисной величины фактора на фактическую. Далее осуществляется вычитание из каждой замены предыдущего значения. На примере аддитивной модели метод цепной подстановки примет вид:

  1. Аддитивная модель $ Y = a + b + c$. Базисный фактор $a_0$ будет последовательно заменяться на каждый фактическое значение фактора $a_1$. При этом количество замен будет равняться количеству воздействующих факторов, то есть $Y_1 = a_1 + b_1 + c_1$
  2. Далее из полученного значения вычитается предшествующее. Каждый фактор будет рассматриваться в двух периодах – базисном и фактическом. Баланс отклонений дельты Y составит совокупность отклонений факторов $a, b, c$.
  3. Полученный результат $Y_0$ и $Y_1$ покажут изменение результата под воздействием факторов в аддитивной модели, где дельта $a, b, c$ – покажет дельту изменения итога.

Метод подстановок рассчитан на оценку количественных показателей. Только рассчитав их, исследователь может обратиться к качественным показателям. Расчет значений факторов позволяет определить как каждый из них влияет на конечный результат. Однако, использование этого метода требует знаний о последовательности влияния факторов на конечный результат. Так же необходимо учитывать их взаимное подчинение, чтобы иметь возможность их систематизировать.

Метод цепных подстановок является инструментом определения влияния структурного фактора на итог. Примером может послужить расчет выручки, который зависит не только от цены реализации, но и от количества проданных товаров, их структуры. То есть, продажа товаров более высокого качества принесет большую сумму дохода, нежели от товаров более низкого качества.

Метод абсолютных разниц

Этот способ применяется для моделей, где рассматривается произведение влияния фактора на конечный результат хозяйственной деятельности. То есть, он используется для моделей аддитивного и мультпликативно-аддитивного вида. Несмотря на то, что область его применения ограничена, он активно применяется в анализе экономической работы субъектов. Оценка проводится путем умножения абсолютного значения прироста на плановое расчетное значение. Таким образом, появляется возможность рассмотреть влияние одного фактора. Значение всех остальных факторов принимается как фактическое и неизменяемое, а последующих факторов в виде базиса.

Расчет воздействия начинается с первого фактора, далее строго соблюдается последовательность влияния факторов. Рассмотрим на примере мультипликативной модели:

  1. $Y (a) = a • b_0 • c_0$, фактор $а$ рассматривается в динамике его изменения, остальные факторы исследуются в их базисном значении.
  2. $Y(b) = a_1 • b • c_0$, то есть рассматриваемый фактор $b$ берется в динамике, предыдущий фактор a оценивается по его фактическому значению, а последующий фактор c по базисному.
  3. $Y (c) = a_1 • b_1 • c$, здесь соблюдается тот же принцип, что и вышеуказанных моделях.

Индексный метод оценки влияния факторов оперирует относительными величинами. Он помогает получить более точное представление о воздействии факторов, так как каждый фактор в его фактическом значении делится на его базисное значение, что позволяет рассчитать индекс. С помощью индексов можно охарактеризовать исследуемое явление во времени и пространстве.

Наиболее часто в экономике используют три вида индексов, а именно, индекс Ласпейреса или индекс фактического товарооборота. Агрегатный индекс цен или индекс Паше широко применяется для оценки динамики цен и зависимости производственного выпуска. Индексы позволяют анализировать влияние факторов в том случае, если оно представлено их произведением.

Интегральный метод является наиболее точным из существующих. Он полностью убирает эффект преувеличения влияния одного фактора, и преуменьшения влияния другого. Это происходит из-за того, что факторы оказывают взаимное влияние, а значит, образуют совместный прирост итогового значения.

Все рассмотренные методы факторного анализа работают для оценки количественного влияния факторов. При этом, исследование сложных факторов подразумевает, что они будут разбиты на более простые составляющие, а затем, элементы будут проанализированы по отдельности. В этом случае, разделенные факторы будут относится ко второму уровню, который рассчитывается с помощью метода долевого участия.

Этот способ представляет собой разбивку факторов на несколько уровней. Чтобы рассчитать факторы второго порядка проводится оценка динамики их прироста. Причем анализируется их доля в общей сумме прироста. Затем осуществляется их умножение на величину влияния совокупного раскладываемого фактора.

Применение методов детерминированного факторного анализа требует соблюдения условий, позволяющих избегать элиминирования. Оно предполагает, что изменение факторов происходит не зависимо друг от друга, когда в реальности все факторы, как правило, оказывают взаимное влияние. Прирост изменения итога обычно происходит по показателю, анализируемому в последнюю очередь. При исследовании модели очень важно учитывать эту особенность, так как месторасположения фактора в цепочке воздействия может влиять на общий результат и влияние других факторов. Помимо приведенных методов, все чаще используются интегральный метод, метод логарифмический, кольцевой, экстремальный и метод взвешенных конечных разностей.

Таким образом, детерминированный факторный анализ и его методы позволяют оценивать влияние факторов на конечный результат. Он широко применяется при анализе хозяйственной деятельности отдельных субъектов хозяйствования и целых систем. Важно помнить, что ни одна структура не является закрытой, а значит, всегда подвержена воздействию других систем, событий, явлений и объектов. При этом сам предмет исследования может оказывать влияние на окружающую среду. Кроме того, детерминированный факторный анализ помогает рассматривать экономические показатели в динамике, что позволяет приблизить исследование к реальности.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Ссылка на основную публикацию
Adblock
detector